Software Review List

Plantation Productions Open Source/Open Hardware Data Acquisition System

Table of Contents
31
Introduction

31.1
Intended Audience

31.2
Definitions, Acronyms and Abbreviations

31.2.1
Definitions

41.2.2
Acronyms and Abbreviations

41.3
Document Conventions

52
General System Description

63
Software Inspection List

63.1
DAQIF

63.1.1
PPDAQ Standard Software Platform

93.2
PPDIO96

143.3
PPDO

163.4
PPAIO-16/4

1 Introduction
This document is the Software Review list (SR) for the Plantation Productions' Open Source/Open Hardware digital data acquisition system. The system hardware is covered under the Creative Commons (CC BY 4.0) found here:

https://creativecommons.org/licenses/by/4.0/
For the purposes of attribution, all work must be attributed to "Randall Hyde, Plantation Productions, Inc., Copyright 2016"

1.1 Intended Audience

The intended audience of this specification is the engineering, product assurance and management personnel involved in Plantation Productions' DAQ hardware and software development.

1.2 Definitions, Acronyms and Abbreviations

1.2.1 Definitions

The definitions used herein are consistent with IEEE 610.12-1990 with the following clarifications:

	Accuracy
	The degree of agreement with the true value of the measured input, expressed as percent of reading for digital readouts. (ANSI N42.18-1980)

	Anomaly
	Anything observed in the documentation or operation of software that deviates from expectations. [Derived from IEEE Std 610.12-1990]

	Catastrophic event
	A catastrophic event is an event without warning from which recovery is impossible. Catastrophic events include hardware or software failures resulting in computation and processing errors The processor will halt or reset, based on a configuration item, after a catastrophic event.

	Channel
	The features and capabilities associated with a detector, a sensor, or a calculated group of information.

	CPU
	Central Processing Unit; specifically, a microcomputer chip.

	Failsafe Condition
	Failsafe condition is an actuated state of the TRIGA System as the result of a catastrophic failure such as loss of power, break of circuit or device failure catastrophic event

	Handled Conditions
	Conditions that the system is designed to handle and continue processing. These conditions include anomalies, faults and failures.

	Hardware Requirements Specification
	A specification that documents the hardware requirements (HRS)

	Power Failure
	Power failure is the condition when AC power is outside required limits or logic power is below a low limit.

	Precision (per ANSI N42.18-80)
	The degree of agreement of repeated measurements of the same input, expressed as percent deviation from the mean reading at 95% confidence level.

	SBC
	Single-board computer

	Software Requirements Specification (SRS)
	Documentation of the essential requirements (functions, performance, design constraints, and attributes) of the software and its external interfaces. [IEEE Std 610.12-1990]

	System Requirements Specification (SyRS)
	A structured collection of information that embodies the requirements of the system. [IEEE Std 1233-1998] A specification that documents the requirements to establish a design basis and the conceptual design for a system or subsystem. [GA-ESI]

	
	

1.2.2 Acronyms and Abbreviations

The abbreviations listed have the following meanings where used in this specification:

	AC
	Alternating Current

	ANSI
	American National Standards Institute

	CPU
	Central Processing Unit

	Cpm
	Counts per Minute

	DAQ
	Data Acquisition (System)

	DPDT
	Double-Pole Double-Throw

	FAT
	Factory Acceptance Test

	IEEE
	Institute of Electrical and Electronic Engineers

	LED
	Light-Emitting Diode

	MTBF
	Mean Time between Failures

	NEMA
	National Electrical Manufacturers Association

	NRC
	Nuclear Regulatory Commission

	RAM
	Radiation Area Monitor

	Rms
	Root Mean Square

	SyRS
	System Requirements Specification

	Vac
	Voltage Alternating Current

	Vdc
	Voltage Direct Current

	WDT
	Watchdog Timer

1.3 Document Conventions

All system requirement tags shall take the form:

<whitespace>
[DAQ_SR_xxx_yyy_iii]

<whitespace>
[DAQ_SR_xxx_yyy_iii.zz]

<whitespace>
[DAQ_SR_xxx_yyy_iii.zz.aa]

etc.

where "xxx" is a three-digit SyRS requirement number, "yyy" is a three- or four-digit SRS requirement number, and "iii" is a three-digit hardware inspection list number.

For SR tags, should the need arise to insert a new SR tag between two other values (e.g., add an inspection item between DAQ_SR_030_040_001 and DAQ_DR_030_040_002) then a decimal fractional number with exactly two digits shall be appended to the SR tag number (e.g., DAQ_SR_030_040_001.05). Any number of decimal point suffixes can be added, if needed (e.g., DAQ_SR_030_040_001.05.02).

2 General System Description

The Software Review list is a set of review items to perform on the software source code. Review items are in lieu of software test cases where a software test is either impractical or impossible for a given requirement but reviewing the source code can easily verify that the software meets the requirement.

Many engineers feel that "if it can't be tested, it cannot be a requirement." Such an attitude, however, unnecessarily restricts what can and cannot be a requirement. The DAQ system includes many such "requirements" that would be difficult to create tests for, but whose adherence by the system is easily shown by simply looking at the source code that implements the requirement. This Software Review list document provides a set of "inspection tests" one can use to verify that the software satisfies the associated requirements.

In order to reduce the effort needed to review the software source code with this Software Review list, the DAQ system software embeds SR tags as comments in the source code. By using a global file search ("grep") operation and searching for a given SR tag in the source code, you can quickly locate the section(s) of code you need to review to ensure the software statisfies a given requirement.

3 Software Inspection List

Reviewer shall check each item in the list after inspecting the software/design and verifying that the required item is present.

3.1 DAQIF

3.1.1 PPDAQ Standard Software Platform
1: [DAQ_SR_700_000_000]

____ Verify code is written for a Netburner MOD 54415 Eval board.

2: [DAQ_SR_701_000_000]

____ Verify software supports reading commands from serial port 1 on MOD54415 Eval board.

3: [DAQ_SR_702_000_000]

____ Verify software activates serial port support for commands if MOD54415 dip sw #1 is in the on position.

4: [DAQ_SR_702_001_000]

____ Verify software creates a separate task to handle serial port command processing.

5: [DAQ_SR_702_002_000]

____ Verify serial task priority is lower than USB and Ethernet task priorities (note: higher priority number is lower priority).

6: [DAQ_SR_704_000_000]

____ Verify software supports reading commands from the USB port on MOD54415 Eval board.

7: [DAQ_SR_705_001_000]

____ Verify software creates a separate task to handle USB port command processing.

8: [DAQ_SR_705_002_000]

____ Verify USB task has a higher priority than the Ethernet and Serial protocol tasks.

9: [DAQ_SR_706_001_000]

____ Verify software does not start the USB task if dip sw #2 is in the off position.

10: [DAQ_SR_707_000_000]

____ Verify software accepts commands via Ethernet 192.168.2.70-192.168.2.76.

11: [DAQ_SR_708_000_000]

____ Verify software Ethernet address based on Netburner dip switches 5-6.

12: [DAQ_SR_716_000_001]

____ Verify that the Ethernet listening task is started only if the Ethernet communications are enabled.

13: [DAQ_SR_716_000_002]

____ Verify that the Ethernet listening task has a priority lower than the USB task but higher than the serial task.

14: [DAQ_SR_718_000_000]

____ Verify software only allows up to 5 Ethernet clients if Dip Switch #4 is in the on position.

15: [DAQ_SR_718_001_000]

____ Verify software only allows only 1 Ethernet client if Dip Switch #4 is in the off position.

16: [DAQ_SR_719_000_000]

____ Verify software sets "unit test mode" on based on dip sw #7 setting.

17: [DAQ_SR_720_000_000]

____ Verify software sets "unit test mode" off based on dip sw #7 setting.

18: [DAQ_SR_721_000_000]

____ Verify software sets "unit test mode" off based on dip sw #7 setting.

19: [DAQ_SR_721_001_000]

____ Verify dip sw #8 on activates debug mode.

20: [DAQ_SR_721_003_000]

____ Verify debug output goes to the UART0 output on the Netburner.

21: [DAQ_SR_723_000_000]

____ Verify software can read the Netburner dip switches.

22: [DAQ_SR_724_000_000]

____ Verify software writes event log enteres to UART0.

23: [DAQ_SR_725_000_000]

Split into [DAQ_SR_725_000_001], [DAQ_SR_725_000_002], and [DAQ_SR_725_000_003].
24: [DAQ_SR_725_000_001]

____ Verify software only responds to host upon receiving an Ethernet command.

25: [DAQ_SR_725_000_002]

____ Verify software only responds to host upon receiving a USB command.

26: [DAQ_SR_725_000_003]

____ Verify software only responds to host upon receiving a Serial command.

27: [DAQ_SR_726_000_000]

Same as [DAQ_SR_702_000_000]
28: [DAQ_SR_727_000_000]

Same as [DAQ_SR_706_001_000]
29: [DAQ_SR_728_000_000]

Same as [DAQ_SR_716_000_001]
30: [DAQ_SR_729_000_000]

Split into [DAQ_SR_729_000_001], [DAQ_SR_729_000_002], and [DAQ_SR_729_000_003].
31: [DAQ_SR_729_000_001]

____ Verify software processes Ethernet commands consisting of lines of ASCII text terminated by a new-line character ('\n', 0xA, line-feed). An optional carriage return ("\r", 0xD) may precede the line feed.

32: [DAQ_SR_729_000_002]

____ Verify software processes USB commands consisting of lines of ASCII text terminated by a new-line character ('\n', 0xA, line-feed). An optional carriage return ("\r", 0xD) may precede the line feed.

33: [DAQ_SR_729_000_003]

____ Verify software processes Serial commands consisting of lines of ASCII text terminated by a new-line character ('\n', 0xA, line-feed). An optional carriage return ("\r", 0xD) may precede the line feed.

34: [DAQ_SR_730_000_000]

____ Verify software commands have the general syntax "<command> <arguments>".

35: [DAQ_SR_731_000_000]

____ Verify software commands are case insensitive.

36: [DAQ_SR_732_000_000]

____ Verify software commands can have an arbitrary amount of white space beween them.

37: [DAQ_SR_738_001_000]

____ Verify that opening a new Ethernet connection creates a new Ethernet command processor task.

38: [DAQ_SR_738_002_000]

____ Verify that the PPDAQ command processing tasks shall each have a different priority that is higher than the priority of the Ethernet listening task and less than the priority of the USB command task..

39: [DAQ_SR_742_000_000]

____ Verify that the software main loop refreshes the watchdog timer at least once every two seconds.

40: [DAQ_SR_744_000_000]

____ Verify that the reset command has the syntax: "reset".

41: [DAQ_SR_744_001_000]

____ Verify that the reset command sends a 350 msec pulse on the DAQ reset line.

42: [DAQ_SR_744_002_000]

____ Verify that the reset command re-initializes the in-memory objects (for PPDO boards) to the power-on state.

43: [DAQ_SR_744_003_000]

____ Verify that the reset command re-initializes all the PPDIO96 boards to an initially configured state:

· All historical information is reset (no queued information).

· No pullup resistors activated

· Direction is input

· Polarity is active high

· Filter is “most recent”

· No debouncing

44: [DAQ_SR_745_000_000]

____ Verify that the version command has the syntax: "version".

45: [DAQ_SR_748_000_000]

____ Verify that the echo command has the syntax: "echo".

46: [DAQ_SR_750_000_000]

____ Verify that the help command has the syntax: "help".

47: [DAQ_SR_751_000_000]

____ Verify that the help command produces a message on the command connection terminal.

3.2 PPDIO96 and PPDI48
48: [DAQ_SR_752_000_000]

____ Verify that the DAQ system supports 0 to 6 PPDIO96/PPDI48 boards.

49: [DAQ_SR_752.1_000_000]

____ Verify that the DAQ system has a “slots” array that keeps track of the PPDIO96/PPDI48 boards present in the system.

50: [DAQ_SR_753_000_000]

____ Verify that the DAQ system allows each PPDIO96 bank to be programmed as an input or an output.

51: [DAQ_SR_754_000_000]

____ Verify that the DAQ system initializes all PPDIO96 banks as input devices.

52: [DAQ_SR_757_000_000]

____ Verify that the DAQ system supports setting the input polarity on each individual input pin.

53: [DAQ_SR_757_002_000]

____ Verify that the DAQ system programs the MCP23S17 polarity register to affect the polarity.

54: [DAQ_SR_758_000_000]

____ Verify that the DAQ system supports enabling/disabling the pullup resistors on each individual input pin.

55: [DAQ_SR_759_000_000]

____ Verify that the DAQ system supports enabling/disabling the individual pullup resistors.

56: [DAQ_SR_759_001_000]

____ Verify that the DAQ system programs the mcp23s17 pullup registers.

57: [DAQ_SR_760_000_000]

____ Verify that the DAQ system reads the ppdio96 digital inputs every 25 msec.

58: [DAQ_SR_761_000_000]

____ Verify that the DAQ system maintains a 40-entry FIFO history list for each bit.

59: [DAQ_SR_762_000_000]

____ Verify that the DAQ system clears the PPDIO96 FIFO history list after the host computer reads the data.

60: [DAQ_SR_762_001_000]

____ Verify that the DAQ system sets a flag after getting a bit to notify the system to clear the history list on the next hardware read.

61: [DAQ_SR_763_000_000]

____ Verify that the DAQ system only keeps the most recent 40 readings in the ppdio96 input history list.

62: [DAQ_SR_764_000_000]

____ Verify that the DAQ system supports five different filtering options for digital input.

63: [DAQ_SR_765_000_000]

____ Verify that the DAQ system supports most recent filtering option for digital input.

64: [DAQ_SR_766_000_000]

____ Verify that the DAQ system supports first reading filtering option for digital input.

65: [DAQ_SR_767_000_000]

____ Verify that the DAQ system supports vote filtering option for digital input.

66: [DAQ_SR_768_000_000]

____ Verify that the DAQ system supports loser filtering option for digital input.

67: [DAQ_SR_769_000_000]

____ Verify that the DAQ system supports debounce filtering option for digital input.

68: [DAQ_SR_770_000_000]

____ Verify that the DAQ system allows the host PC to select a digital input filtering mode.

69: [DAQ_SR_771_000_000]

____ Verify that the DAQ system allows the host PC to set the debounce time.

70: [DAQ_SR_771_001_000]

____ Verify that the DAQ system allows the host PC to set the debounce time specified by (bank, board, bit time).

71: [DAQ_SR_771_002_000]

____ Verify that the DAQ system saves debounce time even if the specified bit is not in debounce mode.

72: [DAQ_SR_772_000_000]

____ Verify that the DAQ system uses 25msec as the debounce time unit.

73: [DAQ_SR_773_000_000]

____ Verify that the DAQ system limits the debounce count to less than 40.

74: [DAQ_SR_774_000_000]

____ Verify that the DAQ system can return the debounce time to the host PC.

75: [DAQ_SR_775_000_000]

____ Verify that the host system can read a single bit from the system.

76: [DAQ_SR_775_001_000]

____ Verify that the DAQ system returns data read from memory, not the actual hardware bit.

77: [DAQ_SR_775_002_000]

____ Verify that the DAQ system returns the last entry in the history queue when the most recent filter mode is enabled.

78: [DAQ_SR_775_003_000]

____ Verify that the DAQ system returns the first entry in the history queue when the first input filter mode is enabled.

79: [DAQ_SR_775_004_000]

____ Verify that the DAQ system returns the value (0 or 1) with the most entries in the history queue when operating in vote mode.

80: [DAQ_SR_775_005_000]

____ Verify that the DAQ system returns the value (0 or 1) with the fewest entries in the history queue when operating in loser mode.

81: [DAQ_SR_775_006_000]

____ Verify that the DAQ system can returns the bit value of the first bit string with at least "debounce count" values (searching backwards in the history mode) when operating in debounce mode.

82: [DAQ_SR_775_007_000]

____ Verify that the DAQ system returns zero as the input bit value if that bit is programmed as an output bit.

83: [DAQ_SR_776_000_000]

____ Verify that the host system can read an entire bank of bits (12).

84: [DAQ_SR_776_001_000]

____ Verify that the software reads a bank of bits by reading 12 individual bits (with filters, etc.) and assembling the 12-bit result to return.

85: [DAQ_SR_779_000_000]

____ Verify that the host system supports writing individual bits.

86: [DAQ_SR_779_001_000]

____ Verify that the software writes bits to internal memory, not directly to hardware.

87: [DAQ_SR_779_002_000]

____ Verify that the host system writes the output bits to hardware every 25 msec.

88: [DAQ_SR_779_003_000]

____ Verify that the software ignores any input bits and does not write them to hardware.

89: [DAQ_SR_780_000_000]

____ Verify that the software allows writing a bank of bits at a time.

90: [DAQ_SR_780_001_000]

____ Verify that the software writes banks of bits to memory, not directly to hardware.

91: [DAQ_SR_780_002_000]

____ Verify that the software ignores the write bank operation if the bank is programmed as input.

92: [DAQ_SR_783_000_000]

____ Verify that the software accepts ppdio96 commands of the form "ppdio <commands> <arguments>".

93: [DAQ_SR_784_000_000]

____ Verify that the software accepts ppdio96 board command of the form "ppdio boards <board count>".

94: [DAQ_SR_787.5_000_000]

____ Verify that the software accepts ppdio96 board command of the form "ppdio boards".

95: [DAQ_SR_784.1_000_000]

____ Verify that the software accepts ppdio96 board command of the form "ppdio slots <bs1> <bs2> <bs3> <bs4> <bs5> <bs6>".

96: [DAQ_SR_787.2_000_000]

____ Verify that the software accepts ppdio96 board command of the form "ppdio slots".

97: [DAQ_SR_788_000_000]

____ Verify that the software accepts ppdio96 board command of the form "ppdio dir <board> <bank> <io>".

98: [DAQ_SR_789_001_000]

____ Verify that the software returns a type error for the “PPDIO DIR” command if the type specified in the slot is not ppdio96BoardType_c (1).

99: [DAQ_SR_790_000_000]

____ Verify that valid "ppdio dir <board> <bank> <io>" commands return the command line as the acknowledgement.

100: [DAQ_SR_791_000_000]

____ Verify that syntactically invalid "ppdio dir <board> <bank> <io>" commands return "Error: syntax: command line" as the acknowledgement.

101: [DAQ_SR_792_000_000]

____ Verify that "ppdio dir <board> <bank> <io>" commands with an invalid <board> value return "Error: range: command line" as the acknowledgement.

102: [DAQ_SR_793_000_000]

____ Verify that "ppdio dir <board> <bank> <io>" commands with an invalid <bank> value return "Error: range: command line" as the acknowledgement.

103: [DAQ_SR_794_000_000]

____ Verify that "ppdio dir <board> <bank> <io>" commands with an invalid <io> value return "Error: range: command line" as the acknowledgement.

104: [DAQ_SR_794.5_000_000]

____ Verify that the software accepts a "ppdio dir <board> <bank>" command.

105: [DAQ_SR_794.6_000_000]

____ Verify that if a "ppdio dir <board> <bank>" command is syntactically correct, the software returns "ppdio dir: direction" as the response.

106: [DAQ_SR_794.9_000_000]

____ Verify that if a "ppdio dir <board> <bank0> <bank1> <bank2> <bank3> <bank4> <bank5> <bank6> <bank7>" command is syntactically correct, the software returns the command line as the response.

107: [DAQ_SR_795_000_000]

____ Verify that the software supports the "ppdio pullup <board> <bank> <bit> <pullup>" command.

108: [DAQ_SR_795_001_000]

____ Verify that the software returns a type error for the “PPDIO PULLUP” command if the type specified in the slot is not ppdio96BoardType_c (1).

109: [DAQ_SR_801.5_000_000]

____ Verify that the software supports the "ppdio pullup <board> <bank> <value>"

110: [DAQ_SR_801.6_000_000]

____ Verify that the software returns the command line if the "ppdio pullup <board> <bank> <value>" command is syntactically correct.

111: [DAQ_SR_801.7_000_000]

____ Verify that the software accepts the command"ppdio pullup <board> <bank>".

112: [DAQ_SR_801.9_000_000]

____ Verify that the software accepts the command"ppdio pullup <board> <pu0> <pu1> <pu2> <pu3> <pu4> <pu5> <pu0> <pu7>".

113: [DAQ_SR_802_000_000]

____ Verify that the software's polarity command has the syntax "ppdio polarity <board> <bank> <bit> <polarity>".

114: [DAQ_SR_802_001_000]

____ Verify that the software returns a type error for the “PPDIO POLARITY” command if the type specified in the slot is not ppdio96BoardType_c (1).

115: [DAQ_SR_810.5_000_000]

____ Verify that the software's polarity command supports the syntax "ppdio polarity <board> <bank> <polarity>".

116: [DAQ_SR_810.7_000_000]

____ Verify that the software's polarity command supports the syntax "ppdio polarity <board> <bank>".

117: [DAQ_SR_811_000_000]

____ Verify that the software's filter command supports the syntax "ppdio filter <board> <bank> <bit> <filter>".

118: [DAQ_SR_812_000_000]

____ Verify that the software's default filter state is “most recent”.

119: [DAQ_SR_819_000_000]

____ Verify that the software allows the following syntax for the debounce command: ppdio debounce board bank bit value.

120: [DAQ_SR_819.5_000_000]

____ Verify that the software allows the following syntax for the debounce command: ppdio debounce board bank bit.

121: [DAQ_SR_827_000_000]

____ Verify that the software allows the following syntax for the din command: ppdio din board bank.

122: [DAQ_SR_831_000_000]

____ Note: inverting the bits read from the mcp23s17 is actually handled by the hardware. So there is nothing in the software to verify that this inversion is taking place. The tag in the source code is associated with the polarity command that programs the mcp23s17 GPIO ICs to perform this inversion. Verify that the software is programming the IPOLA and IPOLB registers on the mcp23s17.

123: [DAQ_SR_833_000_000]

____ Verify that the “ppdio din board” command returns a response string of the form:

ppdio din: xxx​0 xxx1 xxx2 xxx3 xxx4 xxx5 xxx6 xxx7
124: [DAQ_SR_834_000_000]

____ Verify that the “ppdio din board bank” command returns a response string of the form:

ppdio din: xxx​
125: [DAQ_SR_836_000_000]

____ Verify that the software accepts the command “ppdio dout board xxx0 xxx1 xxx2 xxx3 xxx4 xxx5 xxx6 xxx7”
126: [DAQ_SR_836_001_000]

____ Verify that the software returns a type error for the “PPDIO DOUT” command if the type specified in the slot is not ppdio96BoardType_c (1).

127: [DAQ_SR_842_000_000]

____ Verify that the “ppdio dout board xxx0 xxx1 xxx2 xxx3 xxx4 xxx5 xxx6 xxx7” command returns the command line as the acknowledgement
128: [DAQ_SR_844_000_000]

____ Verify that the “ppdio dout board xxx0 xxx1 xxx2 xxx3 xxx4 xxx5 xxx6 xxx7” command returns a range error if any of the xxxi values are outside the range 0-fff.
129: [DAQ_SR_846_000_000]

____ Verify that the “ppdio dout board bank xxx” command returns the command line as a response if the command is syntactically correct.
130: [DAQ_SR_856.5_000_000]

____ Verify that the “ppdio dout board bank” command returns “ppdio dout: xxx” (where xxx represents the 12 bits last written to the port) as the response.
131: [DAQ_SR_857_000_000]

____ Verify that the “ppdio dout …” command is mal-formed, the system returns a syntax error as the response.
3.3 PPDO
132: [DAQ_SR_900_000_000]

____ Verify that the DAQ system supports up to 10 PPRelay-12 and PPSSR-16 boards (PPDO boards).

133: [DAQ_SR_901_000_000]

____ Verify that the PPDO boards command allows the host PC to select the number of attached PPDO boards.

134: [DAQ_SR_902_000_000]

____ Verify that the software reserves at least 16 bits of storage for each PPDO board in the system.

135: [DAQ_SR_903_000_000]

____ Verify that the software reserves storage for at least 10 boards with 16 bits for each board.

136: [DAQ_SR_903_001_000]

____ Verify that the software uses indexes 1..10 for the boards with the first board (index 1) being the board attached directly to the DAQ_IF board.

137: [DAQ_SR_904_000_000]

____ Verify that the software addresses bits on PPDO boards using a (board,bit) indexing scheme.

138: [DAQ_SR_905_000_000]

____ Verify that the software allows writing 16 bits at a time to a single PPDO board.

139: [DAQ_SR_906_000_000]

____ Verify that the software stores the result of a PPDO DOUT command in memory rather than writing the data directly to the hardware.

140: [DAQ_SR_907_000_000]

____ Verify that the software writes the PPDO DOUT data to the hardware on the 25msec loop.

141: [DAQ_SR_908_000_000]

____ Verify that the software can read the output data last written to the PPDO DOUT memory array.

142: [DAQ_SR_909_000_000]

____ Verify that the software writes the PPDO DOUT data to the hardware on the 25msec loop even if the data has not changed.

143: [DAQ_SR_910_000_000]

____ Verify that the software accepts generic PPDO commands of the form:

ppdo <command> <optional arguments>
144: [DAQ_SR_911_000_000]

____ Verify that the software accepts the PPDO boards command using the syntax:

ppdo boards <hexadecimal number in range 1-a>
145: [DAQ_SR_914_001_000]

____ Verify that the software accepts the PPDO boards command using the syntax:

ppdo boards
146: [DAQ_SR_915_000_000]

____ Verify that the software accepts the PPDO boards command using the syntax:

ppdo boards
147: [DAQ_SR_915_000_000]

____ Verify that the software accepts the PPDO dout command using the syntax:

ppdo dout <board> <wordValue>
148: [DAQ_SR_916_000_000]

____ Verify that the software accepts the PPDO dout command using the syntax:

ppdo dout <board> <bit> <value>
149: [DAQ_SR_921_000_000]

____ Verify that the software accepts the PPDO din command using the syntax:

ppdo din <board> <bit>
150: [DAQ_SR_925_000_000]

____ Verify that the software accepts the PPDO din command using the syntax:

ppdo din <board>
151: [DAQ_SR_925_000_000]

____ Verify that the software accepts the PPDO din command using the syntax:

ppdo din <board>
152: [DAQ_SR_929_000_000]

____ Verify that the software accepts the PPDO type command using the syntax:

ppdo type <board>
153: [DAQ_SR_933_000_000]

____ Verify that the software accepts the PPDO type command using the syntax:

ppdo type <board> <type>
3.4 PPAIO-16/4
154: [DAQ_SR_950_000_000]

____ Verify that the software supports up to 8 ppaio-16/4 boards.
155: [DAQ_SR_951_000_000]

____ Verify that the software supports programming double-ended inputs.
156: [DAQ_SR_952_000_000]

____ Verify that the software defaults to single-ended inputs.
157: [DAQ_SR_953_000_000]

____ Verify that the software allows selection of the number of ppaio-16/4 boards.
158: [DAQ_SR_954_000_000] - [DAQ_SR_962_000_000]
____ Verify that the software addresses eight boards at appropriate addresses.
159: [DAQ_SR_963_000_000]

____ Verify that the software allows selection single-ended/differential inputs on ADCs.
160: [DAQ_SR_964_000_000]

____ Verify that the software maintains a history list of at least 40 entries for ADCs.
161: [DAQ_SR_965_000_000]

____ Verify that the software clears the history list on the next read ADC operation after the host system reads an ADC value.
162: [DAQ_SR_965_001_000]

____ Verify that the software sets a flag to clear the history list after the host system reads an ADC value.
163: [DAQ_SR_966_000_000]

____ Verify that the software maintains only the last 40 readings in the history list.
164: [DAQ_SR_967_000_000]

____ Verify that the software maintains six history filtering options.
165: [DAQ_SR_968_000_000]

____ Verify that the software supports most recent reading filter on ADC inputs.
166: [DAQ_SR_969_000_000]

____ Verify that the software supports first reading filter on ADC inputs.
167: [DAQ_SR_970_000_000]

____ Verify that the software supports maximum reading filter on ADC inputs.
168: [DAQ_SR_971_000_000]

____ Verify that the software supports minimum reading filter on ADC inputs.
169: [DAQ_SR_972_000_000]

____ Verify that the software supports arithmetic mean reading filter on ADC inputs.
170: [DAQ_SR_973_000_000]

____ Verify that the software supports median reading filter on ADC inputs.
171: [DAQ_SR_974_000_000]

____ Verify that the software supports setting filtering on individual ports.
172: [DAQ_SR_975_000_000]

____ Verify that the software default is “most recent” filtering for ADC ports.
173: [DAQ_SR_976_000_000]

____ Verify that the software supports an independent gain setting for each channel.
174: [DAQ_SR_977_000_000]

____ Verify that the software supports setting a gain range of 0-6.144V for each ADC channel.
175: [DAQ_SR_978_000_000]

____ Verify that the software supports setting a gain range of 0-4.096V for each ADC channel.
176: [DAQ_SR_979_000_000]

____ Verify that the software supports setting a gain range of 0-2.0484V for each ADC channel.
177: [DAQ_SR_980_000_000]

____ Verify that the software supports setting a gain range of 0-1.0244V for each ADC channel.
178: [DAQ_SR_981_000_000]

____ Verify that the software supports setting a gain range of 0-0.512V for each ADC channel.
179: [DAQ_SR_982_000_000]

____ Verify that the software supports reading any particular ADC port value.
180: [DAQ_SR_983_000_000]

____ Verify that the software supports reading all ADCs on a single board.
181: [DAQ_SR_984_000_000]

____ Verify that the software supports writing to individual DACs on the ppaio-16/4.
182: [DAQ_SR_985_000_000]

____ Verify that the software accepts the PPAIO commands using the syntax:

ppaio <command> <optional arguments>

183: [DAQ_SR_986_000_000]

____ Verify that the software accepts the PPAIO boards command using the syntax:

ppaio boards <boards>

184: [DAQ_SR_986_001_000]

____ Verify that the software accepts the PPAIO dacs command using the syntax:

ppaio dacs <board>

185: [DAQ_SR_986_002_000]

____ Verify that the software accepts the PPAIO adcs command using the syntax:

ppaio adcs <board>

186: [DAQ_SR_986_003_000]

____ Verify that the software accepts the PPAIO dacs command using the syntax:

ppaio dacs <board> <bitmap>

187: [DAQ_SR_986_004_000]

____ Verify that the software accepts the PPAIO adcs command using the syntax:

ppaio adcs <board> <bitmap>
188: [DAQ_SR_989_001_000]

____ Verify that the software accepts the PPAIO boards command using the syntax:

ppaio boards

189: [DAQ_SR_990_000_000]

____ Verify that the software accepts the PPAIO gain command using the syntax:

ppaio gain <board> <port> <gain>

190: [DAQ_SR_991_000_000]

____ Verify that the software uses a default gain of 1 (4.096V) for all ADC channels.
191: [DAQ_SR_998_000_000]

____ Verify that the software accepts the PPAIO filter command using the syntax:

ppaio filter <board> <port> <filter>

192: [DAQ_SR_1006_000_000]

____ Verify that the software accepts the PPAIO ain command using the syntax:

ppaio ain <board>

193: [DAQ_SR_1007_000_000]

____ Verify that the software accepts the PPAIO ain command using the syntax:

ppaio ain <board>

194: [DAQ_SR_1008_000_000]

____ Verify that the software returns 2’s complement values, processed by appropriate analog input filter, when reading ADCs.
195: [DAQ_SR_1010_000_000]

____ Verify that the software, in response to “ppaio ain <board>” returns the response “ppaio ain: xxx0 xxx1 xxx2 … xxx15.
196: [DAQ_SR_1013_000_000]

____ Verify that the software accepts the PPAIO aout command using the syntax:

ppaio aout <board> <xxx0> <xxx1> <xxx2> <xxx3>

197: [DAQ_SR_1014_000_000]

____ Verify that the software accepts the PPAIO aout command using the syntax:

ppaio aout <board> <port> <xxx>

198: [DAQ_SR_1028_000_000]

____ Verify that the software accepts the PPAIO type command using the syntax:

ppaio type <board> <port> <value>

	
	PPDAQ

Plantation Productions' Data Acquisition System
	PPDAQ-SR
Page 2

